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. INTRODUCTION

The main component of a lightweight missile launcher is a
cylindrical tube which is formed by a helical winding of glass filaments
embedded in epoxy resin. In service, the tube is subjected to extreme
internal pressure. Consequently, knowledge concerning the mechanisms of
failure under pressure is vital to the analysis and design of these

tubes. The extensive tests performed by Clodfelter1 provide valuable
data and insights which reveal various modes-of-failure and indicate
alternative methods of analysis.

This report identifies the mechanisms of failure and offers appro-
priate methods to compute the ultimate pressure.

i, MODES OF FAILURE

Three distinct modes-of-failure are observed:

a) Tearing =— A form of rupture which is initiated by crazing
and/or debonding which causes leakage. Such tearing may be caused by
membrane or bending actions.

b) Bursting — An abrupt rupture at the ultimate strength of
the filaments. Crazing and debonding occurs prior to bursting.

c) Buckling — Initiates overall bending and precipitates
rupture.

Each mode-of-rupture is associated with a distinct mechanism and
is intimately related to the angle of wrapping. Tearing depends upon
the strength of the resin and the bond. Bursting depends largely upon
the strength of the filaments. Buckling is mainly dependent upon the
stiffness of the composite. A description of each mechanism is pre-
sented in the following paragraphs.

A. Tearing

Tearing occurs if the resin and/or bond fails (crazing
and/or debonding), and if the state of strain tends to dilate the com-
posite, therefore causing leakage. Membrane actions cause tearing if
the angle of wrapping is less than 45 deg (O < 45 deg) as illustrated

1Clodfelter, G. A., Development of the Filament-Wound osite

Launch Tubes for the SMAWT Program, US Army Missile Command, Redstone
Arsenal, Alabama, March 1975, Technical Report RL-75-8.
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in Figure 1. 1Internal pressure causes a circumferential extension
[line AC of Figure 1(a) stretches to line A'C' of Figure 1(b)}and axial
contraction (line BD contracts to B'D'); the parallelogram ABCD must
dilate to the parallelogram A'B'C'D. The initial fracture of the resin
and/or debonding is accompanied by opening and leakage.

A /\ :

Cc

0

C
(a) (b)

Figure 1. Dilatory actions which initiate failure
in tubes with wrap angles less than 45 deg.

The pressure distribution in the tube is shown in Figure 2. It is
particularly significant that a narrow region at the ends is not subject
to pressure; consequently, the tube bulges as indicated by the dotted
lines. This bending causes some extension of the outer axial lines.

As the angle of wrapping increases, the axial stiffness decreases and
the bending increases; eventually, fracture of the resin and/or debonding
produces tearing.*

1 Figure 2. End bulges which initiate failure
in tubes with large wrap angles.

*In a previous report, this mode-of-failure was identified as
"bursting;" however, because it stems from a failure of the resin and
bond, it is now classified as '"tearing."
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In summary, tearing is caused by membrane action with small angles
(approximately o < 45 deg) and by bending action with large angles
(approximately & > 75 deg), as indicated in Figure 3.

B. Bursting

In a well-designed tube, the high tensile strength of the
filaments is realized, and failure occurs via abrupt bursting when the
tensile stresses upon the filaments reach their ultimate value. If the
angle of wrapping exceeds 45 deg, the netting of filaments contains and
compresses the resin by the action shown in Figure 1. Although the
resin may fracture, it appears to sustain high shear stresses in this
compressed state. If the angle of wrapping is excessive (& > 75 deg),
the local bending shown in Figure 2 counteracts the membrane action of
the netting and causes tearing,

C. Buckling

Experiments have indicated that tubes fail by buckling
in the manner of a column. The plot shown in Figure 4 has all the
features of the corresponding plot for a column under axial compression.
If the tube behaves according to the Euler-Bernoulli theory, the criti-
cal pressure is given by the formula:

nEL
P = K —— 5
c r212
where
E = axial modulus

I = moment of inertia of the cross section

—
]

lengtiu between the end supports (O-rings)

e}
[}

internal radius

K = a dimensionless factor which depends upon the end supports.

mn. ANALYSES OF STRESS, STRAIN, AND ELASTIC BEHAVIOR

In Figure 5, X denotes the length along a filament, X, denotes
the length along the orthogonal line on the cylinder, Xl and X2 denote
lengths along the circumferential and axial lines, and Xy = X3 denotes
the radial distance.
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Figure 5, Coordinate systems for stress

and strain transformation.
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Let S 3 and eij denote a component of stress and strain, respec-

tively, in the system X5

let 01‘]

and 7ij denote a component of stress

and strain, respectively, in the system Xi' Some equations of trans-

formation are as follows:

Sll 11

22 11

S

12, 22 . 11y

[72]
(]

€ sinza- Ze

11

2
722 =1 cos @ + 2¢

712 = =(egp = €9) 8

In Equations (2) and (3),

- S—

o} sinza + 2012

o cosza- 2012

2 2
sin @ cos (X + 02 cos &
22 2
sin @ cos O+ ¢ sin &
2 ) A 2
n @cos o+ 01 (sin"a = cos Q)

2
12 sin O cos @ + €29 cos

2
sin @ cos O + € sin &

12 22
2 2
in @ cos O + €19 (sin” = cos @)

all components are tensorial.

8
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(3b)

(3c)
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cients (C]'J
(filaments)

Estima
the assumpt

constituents behave as Hookean materials,

Clel S

epeated index implies summation. Estimates of the coeffi-

kl) can be calculated from the elastic constants of the glass

and epoxy (resin). For this purpose, let

medulus of elasticity of the glass, resin

Poisson ratio of the glass, resin

part by volume of glass, resin.

tes of the upper bounds for the coefficients are based on
ion that filaments are regularly distributed. The formulas

are as follows:
R -1
= +
C (Eg Rg Er Rr) (5a)
159274 3 : 1111
G = (Jg Rg + Ve Rr) C (5b)
E E
02222 = R Rr Eg ( - vi)+ E—r' (l = v2>
g = g g
+ R R 4 Zy ¥ C1111 (5¢)
r ) &
R R
L2 L2 IS y s
C > Er (1 + /r) + Eg (1 + vg) . (5d)

The moduli of the composite in the circumferential and axial direc-
tions follow from Equations (2), (3), and (4):

g E1 = C1111 sinaa + 2(C1122 o 2C1212) sinza cosza
] 4 b
) -1
o + C2222 coséaJ (6a)
1’ s -
r’; EZ = C1111 cosaa + 2(C1122 + 2C1212) sinza cosza
™ 1-1
g 4+ goe22 sinéoj ! (6b)
|
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The coefficients C1122 and C1212 of Equation (5b) and (5d) are
estimates based upon a regular distribution of the filaments. Lower
values result if the filaments lie contiguously in layers. The actual
values must be determined experimentally. Experiments and computations
for the tube shown in Figures 4 and 6 provide the values E2 = 1.839 x 106
and 1.403 X 106 psi, but the latter is understandably lower. Therefore,

the calculated coefficients, C1122 and 01212, must be similarly reduced

to account for the microstructure of the composite.

If the constituents behave as Hookean materials, estimates of the
stresses acting upon the resin are as follows:

gt [E sl ug @By =Ev) 322] i1l (7a)
r r ghag rg

S22 - S22 (7b)
r

Siz = 512 » (7¢)

A. Tearing
The experimental evidence indicates that the behavior is

nearly linear and elastic to the occurrence of tearing, i.e., to the
fracture of the resin and/or debonding. If the hoop stress predominates,

then, according to Equations (2) and (7),

S11 = 24 [i sinza-+ R (Ev_=Ev) cos%)]cllll (8a)
r 2t r g gr rg
22 _pd .2
Sr 2¢ ©°8 (0 : (8b)
> ol 12 .Ld ’
Sr o¢ Sin @ cos Q. (8¢c)

In this circumstance, the stress components in the resin are
linearly related to the pressure by Equation (8), or simply

2
g £ O ol B SRR o S TN
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where the coefficients (Cll, sz, Clz) are determined by the dimensions
(d, t), the elastic constants (Eg’ Vg’ vr), the ratios of constituents

(Rg’ Rr)’ and the angle (Q).

r

Presume that failure of the resin is governed by the ultimate ten-
sile stress Tr so that the ultimate pressure is given by the formula

L
r

P = . 9
2

o1l . 422 G 22 2¥2
e + i e +\C

Attention is directed to the data for tubes composed of E-glass
and epoxy resin. The following properties are used throughout this
report:

d = 2,915 in.

t = 0.040 in.

- Eg = 10.5 X 106 psi
el
Er = 0.50 X 10" psi
\‘, | id S 0.25
-
. R = 0.64
' 3
R_=0.36 . (10)

If the ultimate strength is Tr = 13,000 psi, Equation (9) determines
curve No. 1 of Figure 6.

Premature tearing occurs near the ends if the angle of wrapping is
-~ large (@ > 80 deg). Bending, as illustrated by Figure 2, causes fracture
and/or debonding of the resin. Calculations were made with the AMGO

- program* to determine the stresses o11 and 022 which cause the maximum
tensile stress Tr' The combined bending and membrane action slightly

[ *Program written by J, Brisbane, Rohm and Haas Co., modified and
executed by G. Patrick.
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reduces the ultimate pressure as indicated by curve No. 3 of Figure 6.
Of course, this analysis does not account for end effects which may
alter the distributions of stress between the constituents, nor does
this analysis provide for imperfections; i.e., cross-overs of the
windings that may be particularly significant at the large angles of
wrapping.

B. Bursting

This analysis supports the experimental observations of
bursting at stresses which exceed the level of initial crazing and
debonding. Accordingly, elastic behavior is not presumed, but computa-
tions are based on two specific assumptions. If the hydrostatic stress
(or mean normal stress) in the resin is compressive, (1) the resin can
sustain shear stresses which exceed the level of fracture, and (2) the
glass filaments can attain the ultimate tensile stress of the roving
(371,000 psi in the present case). The maximum shear stress upon the
resin is assumed constant (40,000 psi in the present case).

Figure 7(a) shows an element of the composite wherein the hoop
11
stress o is shown decomposed into the normal component of the tensile

stress (T ) upon the filaments and the normal stress (011) upon the
resins & 5

11 _ pd _ . 11
o 2t Tg Rg sin O + Or Rr . (113)

: ; 22 " :
Likewise, the vanishing stress (0 ) upon a cross-section is decomposed
so that,

022 =0=T R cos O+ 022 R . (11b)
s "

An element of the resin is shown in Figure 7(b). The condition for
equilibrium of components in the direction X, is as follows:

812 = <022 - 011) sin @ cos & . (12)
r r r

From Equation (11), the normal stresses in the resin follow:

R
> g Y 5% T i
op p(Zth) Tg(Rr sin a) (13a)
22 Az B
Op Tg(:r cos O) v (13b)
13
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DIRECTION
’ X1 FILAMENT
DIRECTION
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} (a) COMPONENT STRESSES ACTING ON
: . THE CONSTITUENTS OF THE
. COMPOSITE
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P — 0 #
&‘,q 812
b,
b RESIN

- N
fae K
| ‘1:
A
1
5 . (b) COMPONENT STRESSES ACTING
P o1 ON THE RESIN IN THE FILAMENT

DIRECTION

i Figure 7. Elements used in bursting analysis.
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In accordance with Equation (12), the maximum shear stress in the resin
follows:

s %(ou ’ 022) ; (13c)

r r r
For given properties (Tg’ T Rg’ Rr) and dimensions (@, d, t), the

normal stresses, oil and 032, are given by Equation (13b) and (13c), and

the ultimate pressure p is then given by Equation (13a). The computation
determines curve No. 2 of Figure 6.

The bursting strengths of curve No. 2 are attained only if the resin
can sustain the maximum shear stress (40,000 psi). Even a fractured
matrix may sustain the shear stress, provided that the compressive
stress is sufficiently great. This calculation indicates that the mean
compressive stress diminishes abruptly (from 80,700 to 40,400 psi) as
the angle of wrapping increases (from 75 to 82 deg). Consequently, it
appears that the angle (O = 75 deg) of wrapping imposes a limitation on
the validity of the foregoing analysis.

C. Buckling

Experimental observations indicate that the tube may
buckle as a column, and suggest that Equation (1) may apply; however,
if the factors E and K are constant, then curve No. 1 does not fit the
experimental data. If the critical stress should exceed the proportional
limit, then the factor E would be the variable modulus; however, the
experimental results indicate that the behavior is nearly linear to the
buckling pressures of Figure 4 (£ > 15). The factor K is variable if
the end conditions are altered. Therefore, one is led to an examination
of the end conditions.

The ends of the tubes are pressed over two O-rings contained in a
plug. 1Initially, the clearance between the plug and tube is approxi-
mately 0.005 in., and the radial compression of the ring is approximately
0.030 in. At the pressure of 5000 psi, the expansion of the tube
(711 = 0.030) relieves the compression of the innermost ring and the

clearance reaches approximately 0.049 in. At the lower pressure of

1350 psi, the ring remains compressed and the clearance is approximately
0.017 in. Therefore, it appears that the rings provide little more than
simple support (K = 1) at the higher pressures (short tubes), but more
support (1 < K < 4) at the lower pressures (long tubes). For simplicity,
assume that the factor K is a linear function of the pressure p; for

the tube of Figure 4,

k=1+0.76(1-785) . (14)

15

-~ - e — D - —




Vod s o

b we T .

|

Equation (14) implies the simply supported ends (K = 1) at the higher
pressure (p = 4300 psi) and elastically-supported ends at the lower
pressures (e.g., K = 1.5 at p = 1400 psi). Equations (1) and (14) pro-
vide curve No. 1 of Figure 4. The short tubes fail by bursting which
is independent of the length as indicated by curve No. 2.

V. SUMMARY AND RECOMMENDATIONS

The preceding experiments and analyses have served to identify
distinct mechanisms of failure (tearing, bursting, and buckling). More-
over, the analyses predict, with reasonable accuracy, the failures of
the cylinders under internal pressure; only those cases of large angles
of wrapping (@ > 75 deg) are unpredictable. The latter could be signifi-
cantly influenced by end conditions and imperfections.

Additional experimentation is needed to obtain enough data to
establish a general criterion of failure. The cylindrical tube appears
to be well-suited to such experimentation for two reasons: (a) it pro-
vides a central portion which has the necessary continuity of constit-
uents, i.e., a portion unaffected by end effects; and (b) the cylindrical
tube is an important form of application.

The necessary experimental program should include the following
tests:

a) Internal pressure.
b) Axial tension.

c) Axial compression.
d) Torsion.

e) Combinations of axial loads and internal pressure.

In addition to further studies of the composite, more tests are
needed to ascertain the properties of the individual constituents (the
glass filaments and resins) and the mechanism of adherence and debonding.

In view of the proven qualities (strength and lightness) of those
composite tubes, an intensive program of research seems fully warranted.
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